Hemodynamic monitoring with two blood gases: “a tool that does not go out of style”

  • Jesús Salvador Sánchez-Díaz Intensive Care, High Specialty Medical Unit, No. 14 Specialties Hospital, "Adolfo Ruiz Cortines” National Medical Center, Mexican Social Security Institute. Veracruz, Mexico. http://orcid.org/0000-0003-1744-9077
  • Karla Gabriela Peniche-Moguel Intensive Care, High Specialty Medical Unit, No. 14 Specialties Hospital, "Adolfo Ruiz Cortines” National Medical Center, Mexican Social Security Institute. Veracruz, Mexico.
  • Gerardo Rivera-Solís Intensive Care, High Specialty Medical Unit, No. 14 Specialties Hospital, "Adolfo Ruiz Cortines” National Medical Center, Mexican Social Security Institute. Veracruz, Mexico.
  • Enrique Antonio Martínez-Rodríguez Anesthesiology, Centro Médico ABC. Mexico City, Mexico.
  • Luis Del-Carpio-Orantes Internal Medicine, Zona No.71 General Hospital, Mexican Social Security Institute. Veracruz, Mexico.
  • Orlando Rubén Pérez-Nieto Intensive Care Unit, San Juan del Río General Hospital. Querétaro, Mexico.
  • Eder Iván Zamarrón-López Intensive Care Unit, Angeles Hospital. Tampico, Mexico.
  • Manuel Alberto Guerrero-Gutiérrez Anesthesiology, General Hospital, National La Raza Medical Center,Mexican Social Security Institute. Mexico City, Mexico.
  • Enrique Monares-Zepeda Intensive Care, ABC Medical Center. Mexico City, Mexico.
Keywords: Hemodynamic monitoring, Blood gas, Cardiac output, Carbon dioxide, Microcirculation

Abstract

Introduction. Hemodynamic monitoring of a critically ill patient is an indispensable tool both inside and outside intensive care; we currently have invasive, minimally invasive and non-invasive devices; however, no device has been shown to have a positive impact on the patient's evolution; arterial and venous blood gases provide information on the patient's actual microcirculatory and metabolic status and may be a hemodynamic monitoring tool.

Objective. To carry out a non-systematic review of the literature of hemodynamic monitoring carried out through the variables obtained in arterial and venous blood gases.

Material and methods. A non-systematic review of the literature was performed in the PubMed, OvidSP and ScienceDirect databases with selection of articles from 2000 to 2019.

Results. It was found that there are variables obtained in arterial and venous blood gases such as central venous oxygen saturation (SvcO2), venous-to-arterial carbon dioxide pressure (∆pv-aCO2), venous-to-arterial carbon dioxide pressure/arteriovenous oxygen content difference (∆pv-aCO2/∆Ca-vO2) that are related to cellular oxygenation, cardiac output (CO), microcirculatory veno-arterial flow and anaerobic metabolism and allow to assess tissue perfusion status.

Conclusion. The variables obtained by arterial and venous blood gases allow for non-invasive, accessible and affordable hemodynamic monitoring that can guide medical decision-making in critically ill patients.

References

Saugel B, Malbrain ML, Perel A. Hemodynamic monitoring in the era of evidence-based medicine. Crit Care. 2016;20(1):401. doi: http://doi.org/10.1186/s13054-016-1534-8.

Ince C. Hemodynamic coherence and the rationale for monitoring the microcirculation. Crit Care. 2015;19 Suppl 3:S8. doi: http://doi.org/10.1186/cc14726.

Tafner PF, Chen FK, Rabello RF, Corrêa TD, Chaves RC, Serpa AN. Recent advances in bedside microcirculation assessment in critically ill patients. Rev Bras Ter Intensiva. 2017;29(2):238-47. doi: http://doi.org/10.5935/0103-507X.20170033.

Hernández G, Boerma EC, Dubin A, Bruhn A, Koopmans M, Edul VK, et al. Severe abnormalities in microvascular perfused vessel density are associated to organ dysfunctions and mortality and can be predicted by hyperlactatemia and norepinephrine requirements in septic shock patients. J Crit Care. 2013;28:538.e9-e14. doi: http://doi.org/10.1016/j.jcrc.2012.11.022.

Ospina GA, Umaña M, Bermúdez WF, Bautista DF, Valencia JD, Madriñán HJ, et al. ¿Can venous-to-arterial carbon dioxide differences reflect microcirculatory alterations in patients with septic shock? Intensive Care Med. 2016;42:211-21. doi: http://doi.org/10.1007/s00134-015-4133-2.

Varpula M, Tallgren M, Saukkonen K. Hemodynamic variables related to outcome in septic shock. Intensive Care Med. 2005;31(8):1066-71. doi: http://doi.org/10.1007/s00134-005-2688-z.

Sasko B, Butz T, Prull MW, Liebeton J, Christ M, Trappe HJ. Earliest bedside assessment of hemodynamic parameters and cardiac biomarkers: Their role as predictors of adverse outcome in patients with septic shock. Int J Med Sci. 2015;12(9):680‐8. doi: http://doi.org/10.7150/ijms.11720.

Velissaris D, Pierrakos C, Scolletta S, Backer D, Vincent JL. High mixed venous oxygen saturation levels do not exclude fluid responsiveness in critically ill septic patients. Crit Care. 2011;15:R177. doi: http://doi.org/10.1186/cc10326.

Bloos F, Reinhart K. Venous oximetry. Intensive Care Med. 2005;31:911-3. doi: http://doi.org/10.1007/s00134-005-2670-9.

Walley KR. Use of central venous oxygen saturation to guide therapy. Am J Respir Crit Care Med. 2011;184:514-20. doi: http://doi.org/10.1164/rccm.201010-1584CI.

Gattinoni L, Vasques F, Camporota L, Meessen J, Romitti F, Pasticci I, et al. Understanding lactatemia in human sepsis. potential impact for early management. Am J Respir Crit Care Med. 2019;200(5):582-9. doi: http://doi.org/10.1164/rccm.201812-2342OC.

Semler MW, Singer M. Deconstructing hyperlactatemia in sepsis using central venous oxygen saturation and base deficit. Am J Respir Crit Care Med. 2019;200(5):526-7. doi: http://doi.org/10.1164/rccm.201904-0899ED.

Gattinoni L, Pesenti A, Matthay M. Understanding blood gas analysis. Intensive Care Med. 2018;44(1):91-3. doi: http://doi.org/10.1007/s00134-017-4824-y.

He H, Long Y, Liu D, Wang X, Tang B. The prognostic value of central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio in septic shock patients with central venous O2 saturation ≥80. Shock. 2017;48(5):551-7. doi: http://doi.org/10.1097/SHK.0000000000000893.

Dellinger R. Cardiovascular management of septic shock. Crit Care Med. 2003;31:946-55. doi: http://doi.org/10.1097/01.CCM.0000057403.73299.A6.

Edul VS, Ince C, Vázquez AR, Rubatto PN, Espinoza ED, Welsh S, et al. Similar microcirculatory alterations in patients with normodynamic and hyperdynamic septic shock. Ann Am Thorac Soc. 2016;13(2):240-7. doi: http://doi.org/10.1513/AnnalsATS.201509-606OC.

Tánczos K, Molnár Z. The oxygen supply-demand balance: a monitoring challenge. Best Pract Res Clin Anaesthesiol. 2013;27(2):201-7. doi: http://doi.org/10.1016/j.bpa.2013.06.001.

Lippi G, Fontana R, Avanzini P, Sandei F, Ippolito L. Influence of spurious hemolysis on blood gas analysis. Clin Chem Lab Med. 2013;51(8):1651-4. doi: http://doi.org/10.1515/cclm-2012-0802.

Saludes P, Proença L, Gruartmoner G, Enseñat L, Pérez-Madrigal A, Espinal C et al. Central venous-to-arterial carbon dioxide difference and the effect of venous hyperoxia: A limiting factor, or an additional marker of severity in shock?. J Clin Monit Comput. 2017;31(6):1203‐11. doi: http://doi.org/10.1007/s10877-016-9954-1.

Ospina GA, Umaña M, Bermúdez W, Bautista DF, Hernández G, Bruhn A, et al. Combination of arterial lactate levels and venous-arterial CO2 to arterial-venous O2 content difference ratio as markers of resuscitation in patients with septic shock. Intensive Care Med. 2015;41(5):796-805. doi: http://doi.org/10.1007/s00134-015-3720-6.

Ospina-Tascón G, Madriñán H. Combination of O2 and CO2-derived variables to detect tissue hypoxia in the critically ill patient. J Thorac Dis. 2019;S1544-50. doi: http://doi.org/10.21037/jtd.2019.03.52.

Mallat J, Vallet B. Difference in venous-arterial carbon dioxide in septic shock. Minerva Anestesiol. 2015;81(4):419-25.

Lamia B, Monnet X, Teboul JL. Meaning of arterio-venous PCO2 difference in circulatory shock. Minerva Anestesiol. 2006;72(6):597-604.

Diaztagle-Fernández JJ, Rodríguez-Murcia JC, Sprockel-Díaz J. Venous-to-arterial carbon dioxide difference in the resuscitation of patients with severe sepsis and septic shock: a systematic review. Med Intensiva. 2017;41(7):401-10. doi: http://doi.org/10.1016/j.medin.2017.03.008.

Waldauf P, Jiroutkova K, Duska F. Using pCO2 Gap in the differential diagnosis of hyperlactatemia outside the context of sepsis: a physiological review and case series. Crit Care Res Pract. 2019:5364503. doi: http://doi.org/10.1155/2019/5364503.

Vallet B, Teboul JL, Cain S, Curtis S. Venoarterial CO2 difference during regional ischemic or hypoxic hypoxia. J Appl Physiol. 2000;89(4):1317-21. doi: http://doi.org/10.1152/jappl.2000.89.4.1317.

Van Beest PA, Lont MC, Holman ND, Loef B, Kuiper MA, Boerma EC. Central venous-arterial pCO2 difference as a tool in resuscitation of septic patients. Intensive Care Med. 2013;39(6):1034-9. doi: http://doi.org/10.1007/s00134-013-2888-x.

De Backer D, Ospina G, Salgado D, Favory R, Creteur J, Vincent JL. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med. 2010;36(11):1813-25. doi: http://doi.org/10.1007/s00134-010-2005-3.

Mekontso A, Castelain V, Anguel N, Bahloul M, Schauvliege F, Richard C, et al. Combination of venoarterial PCO2 difference with arteriovenous O2 content difference to detect anaerobic metabolism in patients. Intensive Care Med. 2002;28(3):272-7. doi: http://doi.org/10.1007/s00134-002-1215-8.

Ospina GA, Hernández G, Cecconi M. Understanding the venous–arterial CO2 to arterial–venous O2 content difference ratio. Intensive Care Med. 2016;42(11):1801-4. doi: http://doi.org/10.1007/s00134-016-4233-7.

Ospina GA, Calderón Tapia LE. Venous-arterial CO2 to arterial-venous O2 differences: A physiological meaning debate. J Crit Care. 2018;48:443-4. doi: http://doi.org/10.1016/j.jcrc.2018.09.030.

Mallat J, Lemyze M, Tronchon L, Vallet B, Thevenin D. Use of venous‑to‑arterial carbon dioxide tension difference to guide resuscitation therapy in septic shock. World J Crit Care Med. 2016;5:47‑56. doi: http://doi.org/10.5492/wjccm.v5.i1.47.

Goldman D, Bateman RM, Ellis CG. Effect of decreased O2 supply on skeletal muscle oxygenation and O2 consumption during sepsis: role of heterogeneous capillary spacing and blood flow. Am J Physiol Heart Circ Physiol. 2016;290:H2277-85. doi: http://doi.org/10.1152/ajpheart.00547.2005.

He HW, Liu DW, Long Y, Wang XT. High central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio is associated with poor lactate clearance in septic patients after resuscitation. J Crit Care. 2016;31(1):76-81. doi: http://doi.org/10.1016/j.jcrc.2015.10.017.

He HW, Liu DW, Ince C. Understanding elevated Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio in venous hyperoxia condition. J Clin Monit Comput 2017;31:1321-3. doi: http://doi.org/10.1007/s10877-017-0005-3.

Rivera SG, Sánchez DJS, Martínez REA, García MRC, Huanca PJM, Calyeca SMV. Clasificación clínica de la perfusión tisular en pacientes con choque séptico basada en la saturación venosa central de oxígeno (SvcO2) y la diferencia enoarterial de dióxido de carbono entre el contenido arteriovenoso de oxígeno (ΔP(v-a)CO2/C(a-v)O2). Rev Asoc Mex Med Crit y Ter Int. 2016;30(5):283-9.

Pascual ES, Sánchez DJS, Peniche MKG, Martínez REA, Villegas DJE, Calyeca SMV. Evaluación de la perfusión tisular en pacientes con choque séptico normodinámico versus hiperdinámico. Rev Asoc Mex Med Crit y Ter Int 2018;32(6). doi: http://doi.org/10.35366/TI186C.

He HW, Liu DW. Central venous-to-arterial CO2 difference/arterial-central venous O2 difference ratio: An experimental model or a bedside clinical tool? J Crit Care. 2016;35:219-20. doi: http://doi.org/10.1016/j.jcrc.2016.05.009.

Yuan S, He H, Long L. Interpretation of venous-to-arterial carbon dioxide difference in the resuscitation of septic shock patients. J Thorac Dis. 2019;S1538-43. doi: http://doi.org/10.21037/jtd.2019.02.79.

Gavelli F, Teboul JL, Monnet X. How can CO2-derived indices guide resuscitation in critically ill patients?. J Thorac Dis. 2019;S1528-37. doi: http://doi.org/10.21037/jtd.2019.07.10.

How to Cite
1.
Sánchez-Díaz JS, Peniche-Moguel KG, Rivera-Solís G, Martínez-Rodríguez EA, Del-Carpio-Orantes L, Pérez-Nieto OR, et al. Hemodynamic monitoring with two blood gases: “a tool that does not go out of style”. Colomb. J. Anesthesiol. [Internet]. 2020 Aug. 28 [cited 2024 Jul. 2];49(1). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/928

Downloads

Download data is not yet available.
Published
2020-08-28
How to Cite
1.
Sánchez-Díaz JS, Peniche-Moguel KG, Rivera-Solís G, Martínez-Rodríguez EA, Del-Carpio-Orantes L, Pérez-Nieto OR, et al. Hemodynamic monitoring with two blood gases: “a tool that does not go out of style”. Colomb. J. Anesthesiol. [Internet]. 2020 Aug. 28 [cited 2024 Jul. 2];49(1). Available from: https://www.revcolanest.com.co/index.php/rca/article/view/928
Section
Narrative review

Altmetric

Article metrics
Abstract views
Galley vies
PDF Views
HTML views
Other views
QR Code

Some similar items: